Herein, we present the intrinsic property of well-known polyesters [poly(alkene succinates)], as Candida albicans and Candida tropicalis biofilm inhibitors with potential to substantially reduce the incidence of device-associated infections in, e.g., indwelling catheters and sutures. These new biopolymer applications, either for manufacturing or coating medical devices, present innovative features such as: simple and cheap preparation, easy scaling-up, good mechanical and thermal resistance properties, and antibiofilm ability without any specific surface functionalization or antimicrobial agent encapsulation. Furthermore, the polyesters are shown to be highly biocompatible, promote human mesenchymal stem cell (hMSC) attachment and proliferation, inducing morphological changes, which are dependent on the polymer structural characteristics, making them promising candidates for materials in specialized medical devices and in the tissue engineering field.

Biocompatible succinic acid-based polyesters for potential biomedical applications: Fungal biofilm inhibition and mesenchymal stem cell growth

Raucci MG;Ambrosio L;
2015

Abstract

Herein, we present the intrinsic property of well-known polyesters [poly(alkene succinates)], as Candida albicans and Candida tropicalis biofilm inhibitors with potential to substantially reduce the incidence of device-associated infections in, e.g., indwelling catheters and sutures. These new biopolymer applications, either for manufacturing or coating medical devices, present innovative features such as: simple and cheap preparation, easy scaling-up, good mechanical and thermal resistance properties, and antibiofilm ability without any specific surface functionalization or antimicrobial agent encapsulation. Furthermore, the polyesters are shown to be highly biocompatible, promote human mesenchymal stem cell (hMSC) attachment and proliferation, inducing morphological changes, which are dependent on the polymer structural characteristics, making them promising candidates for materials in specialized medical devices and in the tissue engineering field.
2015
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
ionic liquids
antifungal
biocompatible
human mesenchymal stem cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/347410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact