Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric-field-induced control of charge-carrier concentration to modulate the channel superconducting properties. Despite the fact that the field-effect is believed to be ineffective for superconducting metals, recent experiments showed electric-field-dependent modulation of the critical current (IC) in a fully metallic transistor. However, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control the IC of the superconducting channel. Our easy fabrication process for DB-FETs show symmetric full suppression of IC for applied critical gate voltages as low as VGC ? ±8 V at temperatures reaching about the 85% of the record critical temperature, TC ? 550 mK, for titanium. The gate-independent TC and normal-state resistance (RN) coupled with the increase of resistance in the superconducting state (RS) for gate voltages close to the critical value (VGC) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (|gmMAX| ? 15 ?A/V at VG ? ±6.5 V) and variations of Josephson kinetic inductance (LK) with VG of 2 orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, and tunable interferometers as well as photon detectors.

Ultra-Efficient Superconducting Dayem Bridge Field-Effect Transistor

Paolucci F;De Simoni G;Strambini E;Solinas P;Giazotto F
2018

Abstract

Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric-field-induced control of charge-carrier concentration to modulate the channel superconducting properties. Despite the fact that the field-effect is believed to be ineffective for superconducting metals, recent experiments showed electric-field-dependent modulation of the critical current (IC) in a fully metallic transistor. However, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control the IC of the superconducting channel. Our easy fabrication process for DB-FETs show symmetric full suppression of IC for applied critical gate voltages as low as VGC ? ±8 V at temperatures reaching about the 85% of the record critical temperature, TC ? 550 mK, for titanium. The gate-independent TC and normal-state resistance (RN) coupled with the increase of resistance in the superconducting state (RS) for gate voltages close to the critical value (VGC) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (|gmMAX| ? 15 ?A/V at VG ? ±6.5 V) and variations of Josephson kinetic inductance (LK) with VG of 2 orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, and tunable interferometers as well as photon detectors.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
field effect
Josephson effect
superconductivity
transistor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/347486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact