In this paper, we develop a function-based a posteriori error estimators for the solution of linear second-order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré-type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in [A. Veeser and R. Verfürth, Explicit upper bounds for dual norms of residuals, SIAM J. Numer. Anal. 47 (2009) 2387-2405], where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.

A posteriori error estimators for hierarchical B-spline discretizations

A Buffa;
2018

Abstract

In this paper, we develop a function-based a posteriori error estimators for the solution of linear second-order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré-type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in [A. Veeser and R. Verfürth, Explicit upper bounds for dual norms of residuals, SIAM J. Numer. Anal. 47 (2009) 2387-2405], where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.
2018
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
A posteriori error estimators
adaptivity
hierarchical splines
File in questo prodotto:
File Dimensione Formato  
prod_387881-doc_163318.pdf

accesso aperto

Descrizione: A posteriori error estimators for hierarchical B-spline discretizations
Tipologia: Versione Editoriale (PDF)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
prod_387881-doc_163319.pdf

solo utenti autorizzati

Descrizione: A posteriori error estimators for hierarchical B-spline discretizations
Tipologia: Versione Editoriale (PDF)
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/347723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact