A vinyl-terminated polycaprolactone has been developed for tissue engineering applications using a one-step synthesis and functionalization method based on ring opening polymerization (ROP) of ?-Caprolactone, with hydroxyl ethyl vinyl ether (HEVE) acting both as the initiator of ROP and as photo-curable functional group. The proposed method employs a catalyst based on aluminium, instead of the most popular Tin(II) 2-ethylhexanoate, to reduce the cytotoxicity. Following the synthesis of the vinyl-terminated polycaprolactone, its reaction with fumaryl chloride (FuCl) results in a divinyl-fumarate polycaprolactone (VPCLF). The polymers obtained were thoroughly characterized using Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The polymer has been successfully employed, in combination with N-vinyl pyrrolidone (NVP), to fabricate films and computer-designed porous scaffolds by micro-stereolithography (?-SL) with gyroid and diamond architectures. Characterization of the networks indicated the influence of NVP content on the network properties. Human mesenchymal stem cells adhered and spread onto VPCLF/NVP networks showing good biological properties and no cytotoxic effect. Copyright © 2016 John Wiley & Sons, Ltd.

Synthesis and characterization of divinyl-fumarate poly-epsilon-caprolactone for scaffolds with controlled architectures

Ronca A;Zeppetelli S;Gloria A;De Santis R;Ambrosio L
2018

Abstract

A vinyl-terminated polycaprolactone has been developed for tissue engineering applications using a one-step synthesis and functionalization method based on ring opening polymerization (ROP) of ?-Caprolactone, with hydroxyl ethyl vinyl ether (HEVE) acting both as the initiator of ROP and as photo-curable functional group. The proposed method employs a catalyst based on aluminium, instead of the most popular Tin(II) 2-ethylhexanoate, to reduce the cytotoxicity. Following the synthesis of the vinyl-terminated polycaprolactone, its reaction with fumaryl chloride (FuCl) results in a divinyl-fumarate polycaprolactone (VPCLF). The polymers obtained were thoroughly characterized using Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) techniques. The polymer has been successfully employed, in combination with N-vinyl pyrrolidone (NVP), to fabricate films and computer-designed porous scaffolds by micro-stereolithography (?-SL) with gyroid and diamond architectures. Characterization of the networks indicated the influence of NVP content on the network properties. Human mesenchymal stem cells adhered and spread onto VPCLF/NVP networks showing good biological properties and no cytotoxic effect. Copyright © 2016 John Wiley & Sons, Ltd.
2018
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Photocrosslinkable polymer
Polycaprolactone fumarate
biocompatibility
stereolithography
cell-material interactions
mathematically defined scaffold
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/347900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact