Strict environmental rules endorse moderate or intense low oxygen dilution (MILD) combustion as a promising technology to increase efficiency while reducing pollutants emission. The experimental and theoretical investigation of oscillatory behaviours in methane MILD combustion is of interest to prevent undesired unstable combustion regimes. In this study new speciation measurements were obtained in a jet-stirred flow reactor (JSR) for stoichiometric mixtures of CH4 and O2, diluted in N2, CO2 and N2-H2O, at p = 1.1 atm and T = 720-1200 K. Oscillations were experimentally detected under specific temperature ranges, where system reactivity is sufficient to promote ignition, but not high enough to sustain complete methane conversion. A thorough kinetic discussion highlights reasons for the observed phenomena, mostly focusing on the effects of different dilutions.

Thermochemical oscillation of methane MILD combustion diluted with N2/CO2/H2O

Sabia P;de Joannon M;
2018

Abstract

Strict environmental rules endorse moderate or intense low oxygen dilution (MILD) combustion as a promising technology to increase efficiency while reducing pollutants emission. The experimental and theoretical investigation of oscillatory behaviours in methane MILD combustion is of interest to prevent undesired unstable combustion regimes. In this study new speciation measurements were obtained in a jet-stirred flow reactor (JSR) for stoichiometric mixtures of CH4 and O2, diluted in N2, CO2 and N2-H2O, at p = 1.1 atm and T = 720-1200 K. Oscillations were experimentally detected under specific temperature ranges, where system reactivity is sufficient to promote ignition, but not high enough to sustain complete methane conversion. A thorough kinetic discussion highlights reasons for the observed phenomena, mostly focusing on the effects of different dilutions.
2018
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Thermochemical oscillation
methane
MILD combustion
kinetic analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact