We study the metric perturbations induced by a classical spinning particle moving along a circular orbit on a Schwarzschild background, limiting the analysis to effects which are first order in spin. The particle is assumed to move on the equatorial plane and has its spin aligned with the z axis. The metric perturbations are obtained by using two different approaches, i.e., by working in two different gauges: the Regge-Wheeler gauge (using the Regge-Wheeler-Zerilli formalism) and a radiation gauge (using the Teukolsky formalism). We then compute the linear-in-spin contribution to the first-order self-force contribution to Detweiler's redshift invariant up to the 8.5 post-Newtonian order. We check that our result is the same in both gauges, as appropriate for a gauge-invariant quantity, and agrees with the currently known 3.5 post-Newtonian results.
Detweiler's redshift Invariant for spinning particles along circular orbits on a Schwarzschild background
Bini Donato;
2018
Abstract
We study the metric perturbations induced by a classical spinning particle moving along a circular orbit on a Schwarzschild background, limiting the analysis to effects which are first order in spin. The particle is assumed to move on the equatorial plane and has its spin aligned with the z axis. The metric perturbations are obtained by using two different approaches, i.e., by working in two different gauges: the Regge-Wheeler gauge (using the Regge-Wheeler-Zerilli formalism) and a radiation gauge (using the Teukolsky formalism). We then compute the linear-in-spin contribution to the first-order self-force contribution to Detweiler's redshift invariant up to the 8.5 post-Newtonian order. We check that our result is the same in both gauges, as appropriate for a gauge-invariant quantity, and agrees with the currently known 3.5 post-Newtonian results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


