We perform direct numerical simulations of three-dimensional Rayleigh-Taylor turbulence with a nonuniform singular initial temperature background. In such conditions, the mixing layer evolves under the driving of a varying effective At wood number; the long-time growth is still self-similar, but no longer proportional to t(2) and depends on the singularity exponent c of the initial profile Delta T proportional to z(c). We show that universality is recovered when looking at the efficiency, defined as the ratio of the variation rates of the kinetic energy over the heat flux. A closure model is proposed that is able to reproduce analytically the time evolution of the mean temperature profiles, in excellent agreement with the numerical results. Finally, we reinterpret our findings in the light of spontaneous stochasticity where the growth of the mixing layer is mapped into the propagation of a wave of turbulent fluctuations on a rough background.

Rayleigh-Taylor turbulence with singular nonuniform initial conditions

Scagliarini A
2018

Abstract

We perform direct numerical simulations of three-dimensional Rayleigh-Taylor turbulence with a nonuniform singular initial temperature background. In such conditions, the mixing layer evolves under the driving of a varying effective At wood number; the long-time growth is still self-similar, but no longer proportional to t(2) and depends on the singularity exponent c of the initial profile Delta T proportional to z(c). We show that universality is recovered when looking at the efficiency, defined as the ratio of the variation rates of the kinetic energy over the heat flux. A closure model is proposed that is able to reproduce analytically the time evolution of the mean temperature profiles, in excellent agreement with the numerical results. Finally, we reinterpret our findings in the light of spontaneous stochasticity where the growth of the mixing layer is mapped into the propagation of a wave of turbulent fluctuations on a rough background.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Turbulence; Rayleigh-Taylor instability; Convection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact