Resistance to IFN-Ieinduced antineoplastic effects has been reported in many tumors and arises, in part, from epigenetic silencing of IFN-stimulated genes by DNA methylation. We hypothesized that restoration of IFN-stimulated genes by co-administration of the demethylating drug 5-aza-2'-deoxycitidine (decitabine [DAC]) may enhance the susceptibility to IFN-Iemediated antitumoral effects in melanoma. We show that combined administration of IFN-I and DAC significantly inhibits the growth of murine and human melanoma cells, both in vitro and in vivo. Compared with controls, DAC/IFN-Ietreated melanoma cells exhibited reduced cell growth, augmented apoptosis, and diminished migration. Moreover, IFN-I and DAC synergized to suppress the growth of three-dimensional human melanoma spheroids, altering tumor architecture. These direct antitumor effects correlated with induction of the IFN-stimulated gene Mx1. In vivo, DAC/IFN-I significantly reduced melanoma growth via stimulation of adaptive immunity, promoting tumor-infiltrating CD8(+) T cells while inhibiting the homing of immunosuppressive CD11b(+) myeloid cells and regulatory T cells. Accordingly, exposure of human melanoma cells to DAC/IFN-I induced the recruitment of immune cells toward the tumor in a Matrigel (Corning Life Sciences, Kennebunkport, ME)-based microfluidic device. Our findings underscore a beneficial effect of DAC plus IFN-I combined treatment against melanoma through both direct and immune-mediated anti-tumor effects.

Combining Type I Interferons and 5-Aza-2 '-Deoxycitidine to Improve Anti-Tumor Response against Melanoma

De Ninno Adele;Gerardino Annamaria;Businaro Luca;
2017

Abstract

Resistance to IFN-Ieinduced antineoplastic effects has been reported in many tumors and arises, in part, from epigenetic silencing of IFN-stimulated genes by DNA methylation. We hypothesized that restoration of IFN-stimulated genes by co-administration of the demethylating drug 5-aza-2'-deoxycitidine (decitabine [DAC]) may enhance the susceptibility to IFN-Iemediated antitumoral effects in melanoma. We show that combined administration of IFN-I and DAC significantly inhibits the growth of murine and human melanoma cells, both in vitro and in vivo. Compared with controls, DAC/IFN-Ietreated melanoma cells exhibited reduced cell growth, augmented apoptosis, and diminished migration. Moreover, IFN-I and DAC synergized to suppress the growth of three-dimensional human melanoma spheroids, altering tumor architecture. These direct antitumor effects correlated with induction of the IFN-stimulated gene Mx1. In vivo, DAC/IFN-I significantly reduced melanoma growth via stimulation of adaptive immunity, promoting tumor-infiltrating CD8(+) T cells while inhibiting the homing of immunosuppressive CD11b(+) myeloid cells and regulatory T cells. Accordingly, exposure of human melanoma cells to DAC/IFN-I induced the recruitment of immune cells toward the tumor in a Matrigel (Corning Life Sciences, Kennebunkport, ME)-based microfluidic device. Our findings underscore a beneficial effect of DAC plus IFN-I combined treatment against melanoma through both direct and immune-mediated anti-tumor effects.
2017
Istituto di fotonica e nanotecnologie - IFN
DNA METHYLTRANSFERASE INHIBITORS; CD8-ALPHA(+) DENDRITIC CELLS; REGULATORY T-CELLS; IFN-ALPHA; CANCER-IMMUNOTHERAPY; METASTATIC MELANOMA; CLINICAL ACTIVITY; SUPPRESSOR-CELLS; IMMUNE CELLS; CROSS-TALK
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact