Self-assembled metal phthalocyanine thin films are receiving considerable interest due to their potential technological applications. In this study, we present a comprehensive study of CoPc and FePc thin films of about 50 nm thickness on technologically relevant substrates such as SiOx/Si, indium tin oxide (ITO) and polycrystalline gold in order to investigate the substrate induced effects on molecular stacking and crystal structure. Raman spectroscopic analysis reveals lower intensity for the vibrational bands corresponding to phthalocyanine macrocycle for the CoPc and FePc thin films grown on ITO as compared to SiOx/Si due to the higher order of phthalocyanine molecules on SiOx/Si. Atomic force microscopy analysis displays higher grain size for FePc and CoPc thin films on ITO as compared to SiOx/Si and polycrystalline gold indicating towards the influence of molecule-substrate interactions on the molecular stacking. Grazing incidence X-ray diffraction reciprocal space maps reveal that FePc and CoPc molecules adopt a combination of herringbone and brickstone arrangement on SiOx/Si and polycrystalline gold substrate, which can have significant implications on the optoelectronic properties of the films due to unique molecular stacking.

Influence of substrate on molecular order for self assembled adlalyers of CoPc and FePc

Luca Cozzarini;Luisa Barba;Alberto Cassetta;Maddalena Pedio
2018

Abstract

Self-assembled metal phthalocyanine thin films are receiving considerable interest due to their potential technological applications. In this study, we present a comprehensive study of CoPc and FePc thin films of about 50 nm thickness on technologically relevant substrates such as SiOx/Si, indium tin oxide (ITO) and polycrystalline gold in order to investigate the substrate induced effects on molecular stacking and crystal structure. Raman spectroscopic analysis reveals lower intensity for the vibrational bands corresponding to phthalocyanine macrocycle for the CoPc and FePc thin films grown on ITO as compared to SiOx/Si due to the higher order of phthalocyanine molecules on SiOx/Si. Atomic force microscopy analysis displays higher grain size for FePc and CoPc thin films on ITO as compared to SiOx/Si and polycrystalline gold indicating towards the influence of molecule-substrate interactions on the molecular stacking. Grazing incidence X-ray diffraction reciprocal space maps reveal that FePc and CoPc molecules adopt a combination of herringbone and brickstone arrangement on SiOx/Si and polycrystalline gold substrate, which can have significant implications on the optoelectronic properties of the films due to unique molecular stacking.
2018
Istituto di Cristallografia - IC
Istituto Officina dei Materiali - IOM -
metal phthalocyanine thin films
molecular stacking
molecule-substrate interactions
Raman spectroscopic analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/348380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact