We consider here a model previously introduced to describe the collective behavior of an ensemble of cold atoms interacting with a coherent electromagnetic field. The atomic motion along the self-generated spatially-periodic force field can be interpreted as the rotation of a phase oscillator. This suggests a relationship with synchronization transitions occurring in globally coupled rotators. In fact, we show that whenever the field dynamics can be adiabatically eliminated, the model reduces to a self-consistent equation for the probability distribution of the atomic "phases". In this limit, there exists a formal equivalence with the Kuramoto model, though with important differences in the self-consistency conditions. Depending on the field-cavity detuning, we show that the onset of synchronized behavior may occur through either a first- or second-order phase transition. Furthermore, we find a secondary threshold, above which a periodic self-pulsing regime sets in, that is immediately followed by the unlocking of the forward-field frequency. At yet higher, but still experimentally meaningful, input intensities, irregular, chaotic oscillations may eventually appear. Finally, we derive a simpler model, involving only five scalar variables, which is able to reproduce the entire phenomenology exhibited by the original model.

Collective atomic recoil laser as a synchronization transition

Politi A.
2008

Abstract

We consider here a model previously introduced to describe the collective behavior of an ensemble of cold atoms interacting with a coherent electromagnetic field. The atomic motion along the self-generated spatially-periodic force field can be interpreted as the rotation of a phase oscillator. This suggests a relationship with synchronization transitions occurring in globally coupled rotators. In fact, we show that whenever the field dynamics can be adiabatically eliminated, the model reduces to a self-consistent equation for the probability distribution of the atomic "phases". In this limit, there exists a formal equivalence with the Kuramoto model, though with important differences in the self-consistency conditions. Depending on the field-cavity detuning, we show that the onset of synchronized behavior may occur through either a first- or second-order phase transition. Furthermore, we find a secondary threshold, above which a periodic self-pulsing regime sets in, that is immediately followed by the unlocking of the forward-field frequency. At yet higher, but still experimentally meaningful, input intensities, irregular, chaotic oscillations may eventually appear. Finally, we derive a simpler model, involving only five scalar variables, which is able to reproduce the entire phenomenology exhibited by the original model.
2008
Istituto dei Sistemi Complessi - ISC
Synchronization
Cold atoms
File in questo prodotto:
File Dimensione Formato  
prod_57498-doc_12075.pdf

accesso aperto

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 763.54 kB
Formato Adobe PDF
763.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/34872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 70
social impact