Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor nervous system. Despite the mechanism underlying motor neuron death is not yet clarified, multiple pathogenic processes have been proposed to account for ALS. Among these, inflammatory/immune responses have recently gained particular interest, although there are conflicting reports on the role of these processes in ALS pathogenesis and treatment. This apparent discrepancy may be due to the absence of an effective stratification of ALS patients into subgroups with markedly different clinical, biological, and molecular features. Our research group recently described genome-wide characterization of motor cortex samples from sporadic ALS (SALS) patients, revealing the existence of molecular and functional heterogeneity in SALS. Here, we reexamine data coming from our previous work, focusing on transcriptomic changes of inflammatory-related genes, in order to investigate their potential contribution in ALS. A total of 1573 inflammatory genes were identified as differentially expressed between SALS patients and controls, characterizing distinct topological pathways and networks, suggestive of specific inflammatory molecular signatures for different patient subgroups. Besides providing promising insights into the intricate relationship between inflammation and ALS, this paper represents a starting point for the rationale design and development of novel and more effective diagnostic and therapeutic applications.

Neuroinflammation and ALS: Transcriptomic Insights into Molecular Disease Mechanisms and Therapeutic Targets

Spampinato Antonio Gianmaria;Cavallaro Sebastiano
2017

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor nervous system. Despite the mechanism underlying motor neuron death is not yet clarified, multiple pathogenic processes have been proposed to account for ALS. Among these, inflammatory/immune responses have recently gained particular interest, although there are conflicting reports on the role of these processes in ALS pathogenesis and treatment. This apparent discrepancy may be due to the absence of an effective stratification of ALS patients into subgroups with markedly different clinical, biological, and molecular features. Our research group recently described genome-wide characterization of motor cortex samples from sporadic ALS (SALS) patients, revealing the existence of molecular and functional heterogeneity in SALS. Here, we reexamine data coming from our previous work, focusing on transcriptomic changes of inflammatory-related genes, in order to investigate their potential contribution in ALS. A total of 1573 inflammatory genes were identified as differentially expressed between SALS patients and controls, characterizing distinct topological pathways and networks, suggestive of specific inflammatory molecular signatures for different patient subgroups. Besides providing promising insights into the intricate relationship between inflammation and ALS, this paper represents a starting point for the rationale design and development of novel and more effective diagnostic and therapeutic applications.
2017
Istituto di Scienze Neurologiche - ISN - Sede Mangone
Transcriptomic
amyotrophic lateral sclerosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact