Reactions of reduced cerium oxide CeOx with water are fundamental processes omnipresent in ceria-based catalysis. Using thin epitaxial films of ordered CeOx, we investigate the influence of oxygen vacancy concentration and coordination on the oxidation of CeOx by water. Upon changing the CeOx stoichiometry from CeO2 to Ce2O3, we observe a transition from a slow surface reaction to a productive H2-evolving CeOx oxidation with reaction yields exceeding the surface capacity and indicating the participation of bulk OH species. Both the experiments and the ab initio calculations associate the effective oxidation of highly reduced CeOx by water to the next-nearest-neighbor oxygen vacancies present in the bixbyite c-Ce2O3 phase. Next-nearest-neighbor oxygen vacancies allow for the effective incorporation of water in the bulk via formation of OH- groups. Our study illustrates that the coordination of oxygen vacancies in CeOx represents an important parameter to be considered in understanding and improving the reactivity of ceria-based catalysts.

Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination

Farnesi Camellone M;Fabris S;
2018

Abstract

Reactions of reduced cerium oxide CeOx with water are fundamental processes omnipresent in ceria-based catalysis. Using thin epitaxial films of ordered CeOx, we investigate the influence of oxygen vacancy concentration and coordination on the oxidation of CeOx by water. Upon changing the CeOx stoichiometry from CeO2 to Ce2O3, we observe a transition from a slow surface reaction to a productive H2-evolving CeOx oxidation with reaction yields exceeding the surface capacity and indicating the participation of bulk OH species. Both the experiments and the ab initio calculations associate the effective oxidation of highly reduced CeOx by water to the next-nearest-neighbor oxygen vacancies present in the bixbyite c-Ce2O3 phase. Next-nearest-neighbor oxygen vacancies allow for the effective incorporation of water in the bulk via formation of OH- groups. Our study illustrates that the coordination of oxygen vacancies in CeOx represents an important parameter to be considered in understanding and improving the reactivity of ceria-based catalysts.
2018
Istituto Officina dei Materiali - IOM -
hydrogen production
model catalyst
point defect
strain
Ce7O12
Ce3O5
Ce2O3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact