In this paper, we propose a technique for the estimation of the influence matrix in a sparse social network, in which n individual communicate in a gossip way. At each step, a random subset of the social actors is active and interacts with randomly chosen neighbors. The opinions evolve according to a Friedkin and Johnsen mechanism, in which the individuals updates their belief to a convex combination of their current belief, the belief of the agents they interact with, and their initial belief, or prejudice. Leveraging recent results of estimation of vector autoregressive processes, we reconstruct the social network topology and the strength of the interconnections starting from partial observations of the interactions, thus removing one of the main drawbacks of finite horizon techniques. The effectiveness of the proposed method is shown on randomly generation networks.

Randomized opinion dynamics over networks: influence estimation from partial observations

Ravazzi C;Dabbene F
2018

Abstract

In this paper, we propose a technique for the estimation of the influence matrix in a sparse social network, in which n individual communicate in a gossip way. At each step, a random subset of the social actors is active and interacts with randomly chosen neighbors. The opinions evolve according to a Friedkin and Johnsen mechanism, in which the individuals updates their belief to a convex combination of their current belief, the belief of the agents they interact with, and their initial belief, or prejudice. Leveraging recent results of estimation of vector autoregressive processes, we reconstruct the social network topology and the strength of the interconnections starting from partial observations of the interactions, thus removing one of the main drawbacks of finite horizon techniques. The effectiveness of the proposed method is shown on randomly generation networks.
2018
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Opinion dynamics
Sampling
Network recovery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact