The exposure of an 8-year-old child to a femtocell operating at 2600 MHz, both (child and source) freely located in random positions in an indoor environment, was assessed. In order to develop surrogate models of the exposure, stochastic dosimetry based on sparse low-rank tensor approximation method (sparse LRA) was used. The surrogate models were used for fastly estimating the specific absorption rate (SAR) in all the possible positions of femtocell and child. Results showed that, for all the possible positions in the room, the exposure values were significantly below the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines for general public and that the probability of reaching SAR values higher than 1% of the ICNIRP guidelines value was lower than 0.006. The variation of the distance between femtocell and child influenced greatly the exposure, resulting in quartile coefficient of dispersion values always higher than 48%.

Children exposure to 4G LTE femtocell in indoor environments estimated by sparse low rank tensor approximations

Chiaramello E;Parazzini M;Fiocchi S;Bonato M;Ravazzani P;
2018

Abstract

The exposure of an 8-year-old child to a femtocell operating at 2600 MHz, both (child and source) freely located in random positions in an indoor environment, was assessed. In order to develop surrogate models of the exposure, stochastic dosimetry based on sparse low-rank tensor approximation method (sparse LRA) was used. The surrogate models were used for fastly estimating the specific absorption rate (SAR) in all the possible positions of femtocell and child. Results showed that, for all the possible positions in the room, the exposure values were significantly below the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines for general public and that the probability of reaching SAR values higher than 1% of the ICNIRP guidelines value was lower than 0.006. The variation of the distance between femtocell and child influenced greatly the exposure, resulting in quartile coefficient of dispersion values always higher than 48%.
2018
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Stochastic dosimetry
RF-EMF exposure
4G LTE femtocell
Sparse low-rank approximation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact