Optically thin cirrus cloud (optical depth 0.3) net radiative forcing represents one of the primary uncertainties in climate feedback, as sub-visible clouds play a fundamental role in atmospheric radiation balance and climate change. A lidar is a very sensitive optical device to detect clouds with an optical depth as low as 10-4. In this paper we assess the daytime net radiative forcing of subvisible cirrus clouds detected at Goddard Space Flight Center, a permanent observational site of the NASA Micro Pulse Lidar Network in 2012. Depending on their height, season and hour of the day, the solar albedo effect can outweigh the infrared greenhouse effect, cooling the earthatmosphere system rather than warming it exclusively. As result, based on latitude, the net forcing of sub-visible cirrus clouds can be more accurately parameterized in climate models. ? 2016 Owned by the authors, published by EDP Sciences.

Understanding Seasonal Variability in thin Cirrus Clouds from Continuous MPLNET Observations at GSFC in 2012

Lolli S;
2016

Abstract

Optically thin cirrus cloud (optical depth 0.3) net radiative forcing represents one of the primary uncertainties in climate feedback, as sub-visible clouds play a fundamental role in atmospheric radiation balance and climate change. A lidar is a very sensitive optical device to detect clouds with an optical depth as low as 10-4. In this paper we assess the daytime net radiative forcing of subvisible cirrus clouds detected at Goddard Space Flight Center, a permanent observational site of the NASA Micro Pulse Lidar Network in 2012. Depending on their height, season and hour of the day, the solar albedo effect can outweigh the infrared greenhouse effect, cooling the earthatmosphere system rather than warming it exclusively. As result, based on latitude, the net forcing of sub-visible cirrus clouds can be more accurately parameterized in climate models. ? 2016 Owned by the authors, published by EDP Sciences.
2016
lidar
boundary layer
clouds
cirrus clouds
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact