In the studies regarding the deep nodes of the tree of life, there is an assumption that might be false. Usually, it is assumed that these nodes - that is to say, those for example regarding the ancestors of bacteria and archaea - are believed to be completely evolved cells and not protocells. In other words, in these studies, it is rarely stressed that, on the contrary, these nodes might correspond to evolutionary stages of premature cells, namely, progenotes. This observation has extremely relevant consequences. Indeed, if the nodes, for example, of the ancestors of bacteria and archaea would correspond to progenotic evolutionary stages, then this should imply that the number of fundamental kinds of primary cells (cellular domains), present on Earth, would be at least four and not two or three as it is currently believed. As a matter of fact, if these two nodes would correspond to two progenotes then, evidently, the fully evolved cells (genotes) - to which we should refer to be able to establish how many fundamental kinds of primary cells are present on Earth - would characterize less deep nodes of these two. Thus, since there is a strong evidence that the ancestors of archaea and bacteria have been of progenotes, these reasonings would assume a particular importance. For instance, it is maintained that one of these fundamental primary cells might be represented by the typical cell of superphylum of the DPANN. In other words, the DPANN superphylum might be a so far non-recognized cellular domain of life. (C) 2018 Elsevier Ltd. All rights reserved.

On Earth, there would be a number of fundamental kinds of primary cells - cellular domains - greater than or equal to four

Di Giulio;Massimo
2018

Abstract

In the studies regarding the deep nodes of the tree of life, there is an assumption that might be false. Usually, it is assumed that these nodes - that is to say, those for example regarding the ancestors of bacteria and archaea - are believed to be completely evolved cells and not protocells. In other words, in these studies, it is rarely stressed that, on the contrary, these nodes might correspond to evolutionary stages of premature cells, namely, progenotes. This observation has extremely relevant consequences. Indeed, if the nodes, for example, of the ancestors of bacteria and archaea would correspond to progenotic evolutionary stages, then this should imply that the number of fundamental kinds of primary cells (cellular domains), present on Earth, would be at least four and not two or three as it is currently believed. As a matter of fact, if these two nodes would correspond to two progenotes then, evidently, the fully evolved cells (genotes) - to which we should refer to be able to establish how many fundamental kinds of primary cells are present on Earth - would characterize less deep nodes of these two. Thus, since there is a strong evidence that the ancestors of archaea and bacteria have been of progenotes, these reasonings would assume a particular importance. For instance, it is maintained that one of these fundamental primary cells might be represented by the typical cell of superphylum of the DPANN. In other words, the DPANN superphylum might be a so far non-recognized cellular domain of life. (C) 2018 Elsevier Ltd. All rights reserved.
2018
Istituto di Bioscienze e Biorisorse
Progenote
Genote
Last universal common ancestor
DPANN superphylum
Thermotogales
Evolutionary stages
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact