We provide an analysis of the pigment composition of reconstituted wild type CP29 complexes. The obtained stoichiometry of 9 +/- 0.6 Chls a and 3 +/- 0.6 Chls b per complex, with some possible heterogeneity in the carotenoid binding, is in agreement with 9 Chls a and 3.5 Chls b revealed by the modeling of low-temperature optical spectra. We find that similar to 50% of Chl b614 is lost during the reconstitution/purification procedure, whereas Chls a are almost fully retained. The excitonic structure and the nature of the low-energy (low-E) state(s) are addressed via simulations (using Redfield theory) of 5 K absorption and fluorescence/ nonresonant hole-burned (NRHB) spectra obtained at different excitation/burning conditions. We show that, depending on laser excitation frequency, reconstituted complexes display two (independent) low-E states (i.e., the A and B traps) with different NRHB and emission spectra. The red-shifted state A near 682.4 nm is assigned to a minor (similar to 10%) subpopulation (sub. II) that most likely originates from an imperfect local folding occurring during protein reconstitution. Its lowest energy state A (localized on Chl a604) is easily burned with lambda(B) = 488.0 nm and has a red-shifted fluorescence origin band near 683.7 nm that is not observed in native (isolated) complexes. Prolonged burning by 488.0 nm light reveals a second low-E trap at 680.2 nm (state B) with a fluorescence origin band at similar to 681 nm, which is also observed when using a direct low-fluence excitation near 650 nm. The latter state is mostly delocalized over the a611, a612, a615 Chl trimer and corresponds to the lowest energy state of the major (similar to 90%) subpopulation (sub. I) that exhibits a lower hole-burning quantum yield. Thus, we suggest that major sub. I correspond to the native folding of CP29, whereas the red shift of the Chl a604 site energy observed in the minor sub. II occurs only in reconstituted complexes.
Structure-Based Exciton Hamiltonian and Dynamics for the Reconstituted Wild-type CP29 Protein Antenna Complex of the Photosystem II
Casazza Anna Paola;
2018
Abstract
We provide an analysis of the pigment composition of reconstituted wild type CP29 complexes. The obtained stoichiometry of 9 +/- 0.6 Chls a and 3 +/- 0.6 Chls b per complex, with some possible heterogeneity in the carotenoid binding, is in agreement with 9 Chls a and 3.5 Chls b revealed by the modeling of low-temperature optical spectra. We find that similar to 50% of Chl b614 is lost during the reconstitution/purification procedure, whereas Chls a are almost fully retained. The excitonic structure and the nature of the low-energy (low-E) state(s) are addressed via simulations (using Redfield theory) of 5 K absorption and fluorescence/ nonresonant hole-burned (NRHB) spectra obtained at different excitation/burning conditions. We show that, depending on laser excitation frequency, reconstituted complexes display two (independent) low-E states (i.e., the A and B traps) with different NRHB and emission spectra. The red-shifted state A near 682.4 nm is assigned to a minor (similar to 10%) subpopulation (sub. II) that most likely originates from an imperfect local folding occurring during protein reconstitution. Its lowest energy state A (localized on Chl a604) is easily burned with lambda(B) = 488.0 nm and has a red-shifted fluorescence origin band near 683.7 nm that is not observed in native (isolated) complexes. Prolonged burning by 488.0 nm light reveals a second low-E trap at 680.2 nm (state B) with a fluorescence origin band at similar to 681 nm, which is also observed when using a direct low-fluence excitation near 650 nm. The latter state is mostly delocalized over the a611, a612, a615 Chl trimer and corresponds to the lowest energy state of the major (similar to 90%) subpopulation (sub. I) that exhibits a lower hole-burning quantum yield. Thus, we suggest that major sub. I correspond to the native folding of CP29, whereas the red shift of the Chl a604 site energy observed in the minor sub. II occurs only in reconstituted complexes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.