We report on the investigation of the influence of the molecular packing and film morphology on the field-effect charge mobility in 2,3-thienoimide-based oligothiophenes semiconductors (Cn-NT4N). Organic field-effect transistors are realized by implementing both vacuum and solution methods in order to control the solid-state phase of the active layer. Thermal sublimation in a high vacuum chamber and supersonic molecular beam deposition were used as vacuum-based fabrication approaches for preparing thin films, while lithographically controlled wetting was used, as a solution-deposition technique, for the fabrication of the microstructured films. Thermal sublimation leads to thin films with a phase packing showing ambipolar behaviour, while supersonic molecular beam deposition enables, by varying the deposition rate, the formation of two different crystal phases, showing ambipolar and unipolar field-effect behaviours. On the other hand, lithographically controlled wetting enables the formation of Cn-NT4N microstructured active layers and their implementation in field-effect transistors.

Tuning polymorphism in 2,3-thienoimide capped oligothiophene based field-effect transistors by implementing vacuum and solution deposition methods

Emilia Benvenuti
;
Denis Gentili
;
Fabio Chiarella;Alberto Portone;Mario Barra;Marco Cecchini;Massimo Zambianchi;Antonio Cassinese;Dario Pisignano;Luana Persano;Massimiliano Cavallini;Manuela Melucci;Michele Muccini;Stefano Toffanin
2018

Abstract

We report on the investigation of the influence of the molecular packing and film morphology on the field-effect charge mobility in 2,3-thienoimide-based oligothiophenes semiconductors (Cn-NT4N). Organic field-effect transistors are realized by implementing both vacuum and solution methods in order to control the solid-state phase of the active layer. Thermal sublimation in a high vacuum chamber and supersonic molecular beam deposition were used as vacuum-based fabrication approaches for preparing thin films, while lithographically controlled wetting was used, as a solution-deposition technique, for the fabrication of the microstructured films. Thermal sublimation leads to thin films with a phase packing showing ambipolar behaviour, while supersonic molecular beam deposition enables, by varying the deposition rate, the formation of two different crystal phases, showing ambipolar and unipolar field-effect behaviours. On the other hand, lithographically controlled wetting enables the formation of Cn-NT4N microstructured active layers and their implementation in field-effect transistors.
2018
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
field-effect
File in questo prodotto:
File Dimensione Formato  
prod_387985-doc_170565.pdf

solo utenti autorizzati

Descrizione: Tuning polymorphism in 2,3-thienoimide capped oligothiophenes based field-effect transistors by implementing vacuum and solution deposition methods
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact