Sixteen wild-type male mice (8 weeks-old) were imaged with high-resolution ultrasound (Vevo 2100). Abdominal aorta and common carotid pulse wave velocities (PWVabd, PWVcar) were obtained processing B-Mode and PW-Doppler images and employed to assess WIA. Amplitudes of the first (W1(abd), W1(car)) and the second (W2(abd), W2(car)) local maxima and minimum (Wb(abd), Wb(car)) were evaluated; areas under the negative part of the curve were also calculated (NA(abd), NA(car)). Cardiac output (CO), ejection fraction (EF) fractional shortening (FS) and stroke volume (SV) were estimated; strain analysis provided strain and strain rate values for longitudinal, radial and circumferential directions (LS, LSR, RS, RSR, CS, CSR). Isovolumetric relaxation time (IVRT) was calculated from mitral inflow PW-Doppler images; IVRT values were normalized for cardiac cycle length.

Wave Intensity Analysis (WIA) can provide parameters representative of the interaction between the vascular network and the heart. It has been already demonstrated that WIA-derived biomarkes have a quantitative physiological meaning. Aim of this study was to develop an image process algorithm for performing non-invasive WIA in mice and correlate commonly used cardiac function parameters with WIA-derived indexes.

Wave Intensity Analysis in Mice: an Ultrasound-Based Study in the Abdominal Aorta and Common Carotid Artery

Kusmic C;Faita F
2017

Abstract

Wave Intensity Analysis (WIA) can provide parameters representative of the interaction between the vascular network and the heart. It has been already demonstrated that WIA-derived biomarkes have a quantitative physiological meaning. Aim of this study was to develop an image process algorithm for performing non-invasive WIA in mice and correlate commonly used cardiac function parameters with WIA-derived indexes.
2017
Istituto di Fisiologia Clinica - IFC
Sixteen wild-type male mice (8 weeks-old) were imaged with high-resolution ultrasound (Vevo 2100). Abdominal aorta and common carotid pulse wave velocities (PWVabd, PWVcar) were obtained processing B-Mode and PW-Doppler images and employed to assess WIA. Amplitudes of the first (W1(abd), W1(car)) and the second (W2(abd), W2(car)) local maxima and minimum (Wb(abd), Wb(car)) were evaluated; areas under the negative part of the curve were also calculated (NA(abd), NA(car)). Cardiac output (CO), ejection fraction (EF) fractional shortening (FS) and stroke volume (SV) were estimated; strain analysis provided strain and strain rate values for longitudinal, radial and circumferential directions (LS, LSR, RS, RSR, CS, CSR). Isovolumetric relaxation time (IVRT) was calculated from mitral inflow PW-Doppler images; IVRT values were normalized for cardiac cycle length.
Wave Intensity Analysis
preclinical imaging
murine models
high-frequency ultrasound
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/349956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact