In the development of environmental friendly and highly efficient energy processes, membrane reactors hold an important role for their ability to carry out, simultaneously and in the same unit, the separation and reaction steps. Taking advantage of the synergies deriving from this coupling, they achieve comparable results to the conventional reactors at less severe conditions. A sensitivity analysis has been developed in order to define the role of some variables on the performance of a membrane reactor for maximizing the system efficiency. The behaviour of a membrane reactor has been investigated by means of a two-dimensional mathematical model applied to the water-gas shift reaction. By depending on operation feed pressure, a specific choice of both sweep gas flow rate and temperature can limit the occurring of dangerous temperature hot spots without compromising the performance of the system. The catalyst distribution coupled with an efficient heat exchange across the membrane have been investigated as possible technical solutions adequate to control hot spots along the membrane reactor.

Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water gas shift reaction

G Chiappetta;G Clarizia;E Drioli
2008

Abstract

In the development of environmental friendly and highly efficient energy processes, membrane reactors hold an important role for their ability to carry out, simultaneously and in the same unit, the separation and reaction steps. Taking advantage of the synergies deriving from this coupling, they achieve comparable results to the conventional reactors at less severe conditions. A sensitivity analysis has been developed in order to define the role of some variables on the performance of a membrane reactor for maximizing the system efficiency. The behaviour of a membrane reactor has been investigated by means of a two-dimensional mathematical model applied to the water-gas shift reaction. By depending on operation feed pressure, a specific choice of both sweep gas flow rate and temperature can limit the occurring of dangerous temperature hot spots without compromising the performance of the system. The catalyst distribution coupled with an efficient heat exchange across the membrane have been investigated as possible technical solutions adequate to control hot spots along the membrane reactor.
2008
Istituto per la Tecnologia delle Membrane - ITM
Non-isothermal membrane reactor
Axial and radial profiles
Catalyst mass distribution
Water-gas shift reaction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
social impact