The functioning of the Shipboard Power System (SPS) is critical to the survival and safety of the ship because many accidents occurring during ship navigation are often due to electrical failures. In smart vessels, the SPS reconfiguration consists of a variation of the electrical topology to successfully supply energy to critical services. The proposed reconfiguration procedure uses a distributed and mission- oriented approach, and it employs a generic-purpose self-adaptive middle- ware (MUSA). MUSA has been customized to dynamically reconfigure an SPS in case of failures or unexpected events. It allows obtaining a runtime solution that properly considers ships mission and current scenario. We also implemented an experimental setup including a Matlab/Simulink simulation of a case study from literature.
Self-Reconfiguration of Shipboard Power Systems
Luca Sabatucci;Massimo Cossentino;Salvatore Lopes
2018
Abstract
The functioning of the Shipboard Power System (SPS) is critical to the survival and safety of the ship because many accidents occurring during ship navigation are often due to electrical failures. In smart vessels, the SPS reconfiguration consists of a variation of the electrical topology to successfully supply energy to critical services. The proposed reconfiguration procedure uses a distributed and mission- oriented approach, and it employs a generic-purpose self-adaptive middle- ware (MUSA). MUSA has been customized to dynamically reconfigure an SPS in case of failures or unexpected events. It allows obtaining a runtime solution that properly considers ships mission and current scenario. We also implemented an experimental setup including a Matlab/Simulink simulation of a case study from literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.