Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.
Water droplets as template for next generation self-assembled poly-(etheretherketone) with Cardo membranes
Gugliuzza A;Macedonio F;Drioli;
2008
Abstract
Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


