We use ballistic electron emission microscopy to investigate prototypical Au/Nb-doped SrTiO3 (NSTO) Schottky barrier diodes for different temperatures and doping levels. To this end, ultrathin Au overlayers are thermally evaporated onto TiO2-terminated NSTO single crystal substrates. We show that at room temperature, regardless of the nominal doping, rectification is controlled by a spatially inhomogeneous Schottky barrier height (SBH), which varies on a length scale of tens of nanometers according to a Gaussian distribution with a mean value of 1.29-1.34 eV and the standard deviation in the range of 80-100 meV. At lower temperatures, however, doping effects become relevant. In particular, junctions with a low Nb content of 0.01 and 0.05 wt. % show an similar to 300 meV decrease in the mean SBH from room temperature to 80 K, which can be explained by an electrostatic analysis assuming a temperature-dependent dielectric permittivity for NSTO. In contrast, this model fails to predict the weaker temperature dependence of SBH for junctions based on 0.5 wt. % NSTO. Our nanoscale investigation demands to reassess conventional models for the NSTO polarizability in high-intensity electric fields. Furthermore, it contributes to the comprehension and prediction of transport in metal/SrTiO3 junctions and devices. Published by AIP Publishing.

Temperature- and doping-dependent nanoscale Schottky barrier height at the Au/Nb:SrTiO3 interface

Buzio R;Gerbi A;Bellingeri E;
2018

Abstract

We use ballistic electron emission microscopy to investigate prototypical Au/Nb-doped SrTiO3 (NSTO) Schottky barrier diodes for different temperatures and doping levels. To this end, ultrathin Au overlayers are thermally evaporated onto TiO2-terminated NSTO single crystal substrates. We show that at room temperature, regardless of the nominal doping, rectification is controlled by a spatially inhomogeneous Schottky barrier height (SBH), which varies on a length scale of tens of nanometers according to a Gaussian distribution with a mean value of 1.29-1.34 eV and the standard deviation in the range of 80-100 meV. At lower temperatures, however, doping effects become relevant. In particular, junctions with a low Nb content of 0.01 and 0.05 wt. % show an similar to 300 meV decrease in the mean SBH from room temperature to 80 K, which can be explained by an electrostatic analysis assuming a temperature-dependent dielectric permittivity for NSTO. In contrast, this model fails to predict the weaker temperature dependence of SBH for junctions based on 0.5 wt. % NSTO. Our nanoscale investigation demands to reassess conventional models for the NSTO polarizability in high-intensity electric fields. Furthermore, it contributes to the comprehension and prediction of transport in metal/SrTiO3 junctions and devices. Published by AIP Publishing.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Manganese oxide | Manganites | laser deposition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/350340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact