Recently it was demonstrated that atomic oxygen can cause the extraction of substrate atoms off metal surfaces thus generating chemically different active sites. For Ag(110) this process occurs when O-2 is dosed at 175 K leading, at low coverage, to the formation of single Ag vacancies. Vacancy creation proceeds thereby via the formation of O-Ag-O complexes, which involve a local reconstruction of the surface and ignite the disruption of the Ag substrate. In this paper, we report on the details of such processes and on the isolated structures formed by the O adatoms in the limit of very low coverage. We employ scanning tunneling microscopy and density functional theory to unravel the complex structures of O/Ag(110) which are transiently present under specific reaction conditions. A variety of features such as isolated gray dots, sombreros, shallow gray and white structures oriented along [001] and [1 (1) over bar0], gray stripes, and lozenges were identified and assigned to O adatoms in different configurations. The zigzag chains interact strongly with the STM tip and are easily disrupted, giving rise to highly mobile, sombrero-shaped, isolated O adatoms also far away from the scanned area, i.e., from the current injection spot. Around 200 K, not only Ag vacancies, which are mobile with anisotropic migration, can merge together into rather complex features, but also the mobile Ag atoms are trapped by O adatoms, thus facilitating the formation of an oxygen-decorated Ag chain along [001] which ultimately induces the well-known added-row reconstruction.

Deciphering complex features in STM images of O adatoms on Ag(110)

Smerieri Marco;Savio Letizia;Vattuone Luca;
2018

Abstract

Recently it was demonstrated that atomic oxygen can cause the extraction of substrate atoms off metal surfaces thus generating chemically different active sites. For Ag(110) this process occurs when O-2 is dosed at 175 K leading, at low coverage, to the formation of single Ag vacancies. Vacancy creation proceeds thereby via the formation of O-Ag-O complexes, which involve a local reconstruction of the surface and ignite the disruption of the Ag substrate. In this paper, we report on the details of such processes and on the isolated structures formed by the O adatoms in the limit of very low coverage. We employ scanning tunneling microscopy and density functional theory to unravel the complex structures of O/Ag(110) which are transiently present under specific reaction conditions. A variety of features such as isolated gray dots, sombreros, shallow gray and white structures oriented along [001] and [1 (1) over bar0], gray stripes, and lozenges were identified and assigned to O adatoms in different configurations. The zigzag chains interact strongly with the STM tip and are easily disrupted, giving rise to highly mobile, sombrero-shaped, isolated O adatoms also far away from the scanned area, i.e., from the current injection spot. Around 200 K, not only Ag vacancies, which are mobile with anisotropic migration, can merge together into rather complex features, but also the mobile Ag atoms are trapped by O adatoms, thus facilitating the formation of an oxygen-decorated Ag chain along [001] which ultimately induces the well-known added-row reconstruction.
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Oxygen
Ag(110)
O adatoms
LT-STM
STM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/350632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact