The spread of an infectious disease can be promoted by previous infections with other pathogens. This cooperative effect can give rise to violent outbreaks, reflecting the presence of an abrupt epidemic transition. As for other diffusive dynamics, the topology of the interaction pattern of the host population plays a crucial role. It was conjectured that a discontinuous transition arises when there are relatively few short loops and many long loops in the contact network. Here we focus on the role of local clustering in determining the nature of the transition. We consider two mutually cooperative pathogens diffusing in the same population: An individual already infected with one disease has an increased probability of getting infected by the other. We look at how a disease obeying the susceptible-infected-removed dynamics spreads on contact networks with tunable clustering. Using numerical simulations we show that for large cooperativity the epidemic transition is always abrupt, with the discontinuity decreasing as clustering is increased. For large clustering strong finite-size effects are present and the discontinuous nature of the transition is manifest only in large networks. We also investigate the problem of influential spreaders for cooperative infections, revealing that both cooperativity and clustering strongly enhance the dependence of the spreading influence on the degree of the initial seed.
Effect of network clustering on mutually cooperative coinfections
Colaiori F.;Castellano C.
2019
Abstract
The spread of an infectious disease can be promoted by previous infections with other pathogens. This cooperative effect can give rise to violent outbreaks, reflecting the presence of an abrupt epidemic transition. As for other diffusive dynamics, the topology of the interaction pattern of the host population plays a crucial role. It was conjectured that a discontinuous transition arises when there are relatively few short loops and many long loops in the contact network. Here we focus on the role of local clustering in determining the nature of the transition. We consider two mutually cooperative pathogens diffusing in the same population: An individual already infected with one disease has an increased probability of getting infected by the other. We look at how a disease obeying the susceptible-infected-removed dynamics spreads on contact networks with tunable clustering. Using numerical simulations we show that for large cooperativity the epidemic transition is always abrupt, with the discontinuity decreasing as clustering is increased. For large clustering strong finite-size effects are present and the discontinuous nature of the transition is manifest only in large networks. We also investigate the problem of influential spreaders for cooperative infections, revealing that both cooperativity and clustering strongly enhance the dependence of the spreading influence on the degree of the initial seed.File | Dimensione | Formato | |
---|---|---|---|
prod_399897-doc_138748.pdf
solo utenti autorizzati
Descrizione: Effect of network clustering on mutually cooperative coinfections
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
715.28 kB
Formato
Adobe PDF
|
715.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.