The mechanical vibrations of individual gold nanodisks nanopatterned on a sapphire substrate are investigated using ultrafast time-resolved optical spectroscopy. The number and characteristics of the detected acoustic modes are found to vary with nanodisk geometry. In particular, their quality factors strongly depend on nanodisk aspect ratio (i.e., diameter over height ratio), reaching a maximal value of ?70, higher than those previously measured for substrate-supported nano-objects. The peculiarities of the detected acoustic vibrations are confirmed by finite-element simulations, and interpreted as the result of substrate-induced hybridization between the vibrational modes of a nanodisk. The present findings demonstrate novel possibilities for engineering the vibrational modes of nano-objects.
Controlling the Quality Factor of a Single Acoustic Nanoresonator by Tuning its Morphology
Rossella F;
2018
Abstract
The mechanical vibrations of individual gold nanodisks nanopatterned on a sapphire substrate are investigated using ultrafast time-resolved optical spectroscopy. The number and characteristics of the detected acoustic modes are found to vary with nanodisk geometry. In particular, their quality factors strongly depend on nanodisk aspect ratio (i.e., diameter over height ratio), reaching a maximal value of ?70, higher than those previously measured for substrate-supported nano-objects. The peculiarities of the detected acoustic vibrations are confirmed by finite-element simulations, and interpreted as the result of substrate-induced hybridization between the vibrational modes of a nanodisk. The present findings demonstrate novel possibilities for engineering the vibrational modes of nano-objects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.