Call Detail Records (CDR) are an important source of information in the study of diverse aspects of human mobility. The accuracy of mobility information granted by CDR strongly depends on the radio access infrastructure deployment and the frequency of interactions between mobile users and the network. As cellular network deployment is highly irregular and interaction frequencies are typically low, CDR are often characterized by spatial and temporal sparsity, which, in turn, can bias mobility analyses based on such data. In this paper, we precisely address this subject. First, we evaluate the spatial error in CDR, caused by approximating user positions with cell tower locations. Second, we assess the impact of the limited spatial and temporal granularity of CDR on the estimation of standard mobility metrics. Third, we propose novel and effective techniques to reduce temporal sparsity in CDR by leveraging regularity in human movement patterns. Tests with real-world datasets show that our solutions can reduce temporal sparsity in CDR by recovering 75% of daytime hours, while retaining a spatial accuracy within 1 km for 95% of the completed data.
Enriching sparse mobility information in Call Detail Records
Fiore Marco;
2018
Abstract
Call Detail Records (CDR) are an important source of information in the study of diverse aspects of human mobility. The accuracy of mobility information granted by CDR strongly depends on the radio access infrastructure deployment and the frequency of interactions between mobile users and the network. As cellular network deployment is highly irregular and interaction frequencies are typically low, CDR are often characterized by spatial and temporal sparsity, which, in turn, can bias mobility analyses based on such data. In this paper, we precisely address this subject. First, we evaluate the spatial error in CDR, caused by approximating user positions with cell tower locations. Second, we assess the impact of the limited spatial and temporal granularity of CDR on the estimation of standard mobility metrics. Third, we propose novel and effective techniques to reduce temporal sparsity in CDR by leveraging regularity in human movement patterns. Tests with real-world datasets show that our solutions can reduce temporal sparsity in CDR by recovering 75% of daytime hours, while retaining a spatial accuracy within 1 km for 95% of the completed data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.