One of the challenges associated with the development of next-generation electronics is to find alternatives to silicon oxide caused by the size-reduction constraints of the devices. The dielectric properties of two-dimensional (2D) crystals, added to their excellent chemical stability, mechanical and thermal properties, make them promising dielectrics. Here we show that liquid-phase exfoliation (LPE) in water by using low-cost commercial organic dyes as dispersant agents can efficiently produce defect-free 2D nanosheets, including mono-layers, in suspensions. We further show that these suspensions can be easily incorporated into current practical graphene-based devices. In particular, it is found that boron nitride thin films made by LPE are excellent dielectrics that are highly compatible with graphene-based electronics.

Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics

Palermo Vincenzo;
2014

Abstract

One of the challenges associated with the development of next-generation electronics is to find alternatives to silicon oxide caused by the size-reduction constraints of the devices. The dielectric properties of two-dimensional (2D) crystals, added to their excellent chemical stability, mechanical and thermal properties, make them promising dielectrics. Here we show that liquid-phase exfoliation (LPE) in water by using low-cost commercial organic dyes as dispersant agents can efficiently produce defect-free 2D nanosheets, including mono-layers, in suspensions. We further show that these suspensions can be easily incorporated into current practical graphene-based devices. In particular, it is found that boron nitride thin films made by LPE are excellent dielectrics that are highly compatible with graphene-based electronics.
2014
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
2D crystals
liquid phase exfoliation
electronics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/351339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 56
social impact