The solution environment is of fundamental importance in the adsorption of molecules on surfaces, a process that is strongly affected by the capability of the adsorbate to disrupt the hydration layer above the surface. Here we disclose how the presence of interface water influences the adsorption mechanism of DNA nucleobases on a gold surface. By means of metadynamics simulations, we describe the distinctive features of a complex free-energy landscape for each base, which manifests activation barriers for the adsorption process. We characterize the different pathways that allow each nucleobase to overcome the barriers and be adsorbed on the surface, discussing how they influence the kinetics of adsorption of single-stranded DNA oligomers with homogeneous sequences. Our findings offer a rationale as to why experimental data on the adsorption of single-stranded homo-oligonucleotides do not straightforwardly follow the thermodynamics affinity rank.

Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface

Di Felice Rosa;Corni Stefano
2018

Abstract

The solution environment is of fundamental importance in the adsorption of molecules on surfaces, a process that is strongly affected by the capability of the adsorbate to disrupt the hydration layer above the surface. Here we disclose how the presence of interface water influences the adsorption mechanism of DNA nucleobases on a gold surface. By means of metadynamics simulations, we describe the distinctive features of a complex free-energy landscape for each base, which manifests activation barriers for the adsorption process. We characterize the different pathways that allow each nucleobase to overcome the barriers and be adsorbed on the surface, discussing how they influence the kinetics of adsorption of single-stranded DNA oligomers with homogeneous sequences. Our findings offer a rationale as to why experimental data on the adsorption of single-stranded homo-oligonucleotides do not straightforwardly follow the thermodynamics affinity rank.
2018
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/351795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact