Natural and anthropogenic aerosol emissions play a fundamental role both in directly modulating the incoming solar radiation and affecting air quality in the planetary boundary layer. Likewise, their indirect effects impact cloud lifetime, atmospheric column thermodynamics and precipitation patterns. For this reason, it is of crucial importance to assess aerosol spatial and temporal variability to reduce the uncertainty in forecasting future scenarios by the climatological models. In this study we developed an image based robust methodology that permits to retrieve the atmospheric path radiance and then the Aerosol Optical Depth (AOD) using satellite high-resolution spatial images paired with the Fu-Liou-Gu radiative transfer model. We applied our methodology to study aerosol variability in the PO valley (Northern Italy), one of the most polluted region in Europe.

High-resolution satellite aerosol optical depth retrieval and its variability over highly industrialized hotspots in the Po Valley, Italy

Lolli Simone;Vivone Gemine
2018

Abstract

Natural and anthropogenic aerosol emissions play a fundamental role both in directly modulating the incoming solar radiation and affecting air quality in the planetary boundary layer. Likewise, their indirect effects impact cloud lifetime, atmospheric column thermodynamics and precipitation patterns. For this reason, it is of crucial importance to assess aerosol spatial and temporal variability to reduce the uncertainty in forecasting future scenarios by the climatological models. In this study we developed an image based robust methodology that permits to retrieve the atmospheric path radiance and then the Aerosol Optical Depth (AOD) using satellite high-resolution spatial images paired with the Fu-Liou-Gu radiative transfer model. We applied our methodology to study aerosol variability in the PO valley (Northern Italy), one of the most polluted region in Europe.
2018
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Aerosol optical depth
Aerosols
Air quality
Atmospheric path-radiance
Change analysis
Fu-Liou-Gu
Google Earth Engine
Image fusion
Po Valley
Radiative transfer model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact