The skeleton morphology of the azooxanthellate cold-water coral Lophelia pertusa can be strongly influenced by invasive boring sponges that infest corallites in the still living part of the colony. Atypically swollen corallites of live Lophelia pertusa from the Galway Mound (Belgica Carbonate Mound Province, Porcupine Seabight, NE Atlantic), heavily excavated by boring organisms, have been examined with a wide range of non-destructive and destructive methods: micro-computed tomography, macro- and microscopic observations of the outer coral skeleton, longitudinal and transversal thin sections and SEM analyses of coral skeleton casts. As a result, three excavating sponge species have been distinguished within the coral skeleton: Alectona millari, Spiroxya heteroclita and Aka infesta. Furthermore, four main coral/sponge growth stages have been recognised: (1) cylindrical juvenile corallite/no sponge cavities; (2) flared juvenile corallite/linear sponge cavities (if present); (3) slightly swollen adult corallites/chambered oval sponge cavities; (4) very swollen adult corallites/widespread cavities. The inferred correlation between corallite morphology and boring sponge infestation has been detected in micro-computed tomography (micro-CT) images and confirmed in sponge trace casts and peculiar features of coral skeleton microstructure.

Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with microcomputed tomography

2007

Abstract

The skeleton morphology of the azooxanthellate cold-water coral Lophelia pertusa can be strongly influenced by invasive boring sponges that infest corallites in the still living part of the colony. Atypically swollen corallites of live Lophelia pertusa from the Galway Mound (Belgica Carbonate Mound Province, Porcupine Seabight, NE Atlantic), heavily excavated by boring organisms, have been examined with a wide range of non-destructive and destructive methods: micro-computed tomography, macro- and microscopic observations of the outer coral skeleton, longitudinal and transversal thin sections and SEM analyses of coral skeleton casts. As a result, three excavating sponge species have been distinguished within the coral skeleton: Alectona millari, Spiroxya heteroclita and Aka infesta. Furthermore, four main coral/sponge growth stages have been recognised: (1) cylindrical juvenile corallite/no sponge cavities; (2) flared juvenile corallite/linear sponge cavities (if present); (3) slightly swollen adult corallites/chambered oval sponge cavities; (4) very swollen adult corallites/widespread cavities. The inferred correlation between corallite morphology and boring sponge infestation has been detected in micro-computed tomography (micro-CT) images and confirmed in sponge trace casts and peculiar features of coral skeleton microstructure.
2007
Istituto di Scienze Marine - ISMAR
Bioerosion;
Interaction;
Ecotype;
Lophelia;
Boring sponges
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact