A fluorescence study of N1-(?-D-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of Glycogen Phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited state. They result from rotation of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge transfer states. The fingerprint of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.

Multiscale time-resolved fluorescence study of a glycogen phosphorylase inhibitor combined with quantum chemistry calculations

Filippo Monti;Alessandro Venturini
2019

Abstract

A fluorescence study of N1-(?-D-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of Glycogen Phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited state. They result from rotation of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge transfer states. The fingerprint of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.
2019
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Inhibitor
DFT
Multiscale fluorescence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact