Despite landslides impact the society worldwide every day, landslide information is inhomogeneous and lacking. When landslides occur in remote areas or where the availability of optical images is rare due to cloud persistence, they might remain unknown, or unnoticed for long time, preventing studies and hampering civil protection operations. The unprecedented availability of SAR C-band images provided by the Sentinel-1 constellation offers the opportunity to propose new solutions to detect landslides events. In this work, we perform a systematic assessment of Sentinel-1 SAR C-band images acquired before and after known events. We present the results of a pilot study on 32 worldwide cases of rapid landslides entailing different types, sizes, slope expositions, as well as pre-existing land cover, triggering factors and climatic regimes. Results show that in about eighty-four percent of the cases, changes caused by landslides on SAR amplitudes are unambiguous, whereas only in about thirteen percent of the cases there is no evidence. On the other hand, the signal does not allow for a systematic use to produce inventories because only in 8 cases, a delineation of the landslide borders (i.e., mapping) can be manually attempted. In a few cases, cascade multi-hazard (e.g., floods caused by landslides) and evidences of extreme triggering factors (e.g., strong earthquakes or very rapid snow melting) were detected. The method promises to increase the availability of information on landslides at different spatial and temporal scales with benefits for event magnitude assessment during weather-related emergencies, model tuning, and landslide forecast model validation, in particular when accurate mapping is not required.

Sentinel-1 SAR Amplitude Imagery for Rapid Landslide Detection

Michele Santangelo;Margherita Rocchetti;
2019

Abstract

Despite landslides impact the society worldwide every day, landslide information is inhomogeneous and lacking. When landslides occur in remote areas or where the availability of optical images is rare due to cloud persistence, they might remain unknown, or unnoticed for long time, preventing studies and hampering civil protection operations. The unprecedented availability of SAR C-band images provided by the Sentinel-1 constellation offers the opportunity to propose new solutions to detect landslides events. In this work, we perform a systematic assessment of Sentinel-1 SAR C-band images acquired before and after known events. We present the results of a pilot study on 32 worldwide cases of rapid landslides entailing different types, sizes, slope expositions, as well as pre-existing land cover, triggering factors and climatic regimes. Results show that in about eighty-four percent of the cases, changes caused by landslides on SAR amplitudes are unambiguous, whereas only in about thirteen percent of the cases there is no evidence. On the other hand, the signal does not allow for a systematic use to produce inventories because only in 8 cases, a delineation of the landslide borders (i.e., mapping) can be manually attempted. In a few cases, cascade multi-hazard (e.g., floods caused by landslides) and evidences of extreme triggering factors (e.g., strong earthquakes or very rapid snow melting) were detected. The method promises to increase the availability of information on landslides at different spatial and temporal scales with benefits for event magnitude assessment during weather-related emergencies, model tuning, and landslide forecast model validation, in particular when accurate mapping is not required.
2019
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
landslides; SAR amplitude; photo-interpretation; change detection
File in questo prodotto:
File Dimensione Formato  
prod_401347-doc_159847.pdf

solo utenti autorizzati

Descrizione: paper
Tipologia: Versione Editoriale (PDF)
Dimensione 23.85 MB
Formato Adobe PDF
23.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact