Through their computational and forwarding capabilities, 5G networks can support multiple vertical services. Such services may include several common virtual (network) functions (VNFs), which could be shared to increase resource efficiency. In this paper, we focus on the seldom studied VNF-sharing problem, and decide (i) whether sharing a VNF instance is possible/beneficial or not, (ii) how to scale virtual machines hosting the VNFs to share, and (iii) the priorities of the different services sharing the same VNF. These decisions are made with the aim to minimize the mobile operator's costs while meeting the verticals' performance requirements. Importantly, we show that the aforementioned priorities should not be determined a priori on a per-service basis, rather they should change across VNFs since such additional flexibility allows for more efficient solutions. We then present an effective methodology called FlexShare, enabling near-optimal VNF-sharing decisions in polynomial time. Our performance evaluation, using real-world VNF graphs, confirms the effectiveness of our approach, which consistently outperforms baseline solutions using per-service priorities.

Getting the Most Out of Your VNFs: Flexible Assignment of Service Priorities in 5G

Francesco Malandrino;
2019

Abstract

Through their computational and forwarding capabilities, 5G networks can support multiple vertical services. Such services may include several common virtual (network) functions (VNFs), which could be shared to increase resource efficiency. In this paper, we focus on the seldom studied VNF-sharing problem, and decide (i) whether sharing a VNF instance is possible/beneficial or not, (ii) how to scale virtual machines hosting the VNFs to share, and (iii) the priorities of the different services sharing the same VNF. These decisions are made with the aim to minimize the mobile operator's costs while meeting the verticals' performance requirements. Importantly, we show that the aforementioned priorities should not be determined a priori on a per-service basis, rather they should change across VNFs since such additional flexibility allows for more efficient solutions. We then present an effective methodology called FlexShare, enabling near-optimal VNF-sharing decisions in polynomial time. Our performance evaluation, using real-world VNF graphs, confirms the effectiveness of our approach, which consistently outperforms baseline solutions using per-service priorities.
2019
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
5G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact