Users' polarization and confirmation bias play a key role in misinformation spreading on online social media. Our aim is to use this information to determine in advance potential targets for hoaxes and fake news. In this article, we introduce a framework for promptly identifying polarizing content on social media and, thus, "predicting" future fake news topics. We validate the performances of the proposed methodology on a massive Italian Facebook dataset, showing that we are able to identify topics that are susceptible to misinformation with 77% accuracy. Moreover, such information may be embedded as a new feature in an additional classifier able to recognize fake news with 91% accuracy. The novelty of our approach consists in taking into account a series of characteristics related to users' behavior on online social media such as Facebook, making a first, important step towards the mitigation of misinformation phenomena by supporting the identification of potential misinformation targets and thus the design of tailored counter-narratives.

Polarization and Fake News: Early Warning of Potential Misinformation Targets

SCALA A;
2019

Abstract

Users' polarization and confirmation bias play a key role in misinformation spreading on online social media. Our aim is to use this information to determine in advance potential targets for hoaxes and fake news. In this article, we introduce a framework for promptly identifying polarizing content on social media and, thus, "predicting" future fake news topics. We validate the performances of the proposed methodology on a massive Italian Facebook dataset, showing that we are able to identify topics that are susceptible to misinformation with 77% accuracy. Moreover, such information may be embedded as a new feature in an additional classifier able to recognize fake news with 91% accuracy. The novelty of our approach consists in taking into account a series of characteristics related to users' behavior on online social media such as Facebook, making a first, important step towards the mitigation of misinformation phenomena by supporting the identification of potential misinformation targets and thus the design of tailored counter-narratives.
2019
Istituto dei Sistemi Complessi - ISC
Social media
classification
fake news
misinformation
polarization
File in questo prodotto:
File Dimensione Formato  
prod_401387-doc_139605.pdf

solo utenti autorizzati

Descrizione: Polarization and Fake News: Early Warning of Potential Misinformation Targets
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 203
  • ???jsp.display-item.citation.isi??? 147
social impact