Laser pulse induced photo-detachment combined with Langmuir probing has been introduced to diagnose plasma electronegativity. This technique uses a laser pulse to convert negative ions into electron-atom pairs and tracks the change of electron saturation current by a Langmuir probe. The existing model determines plasma electronegativity as the ratio of electron saturation current before and after detachment. However, this model depends on various assumptions and neglects the formation of a potential barrier between the laser channel and surrounding electronegative plasma. In this letter, we present a new analytical model to analyze photo-detachment signals in order to improve the accuracy of electronegativity measurements and extend this technique for measuring electron temperature and charged species density. This analytical model is supported by Particle-In-Cell simulation of electronegative plasma dynamics following laser photo-detachment. The analysis of the signal, detected on a simulated probe, shows that the present analytical model determines electronegativity, electron temperature, and plasma density with a relative error of similar to 20%, similar to 20%, and similar to 50%, respectively, whereas the electronegativity obtained from a previous model is underestimated by an order of magnitude. Published by AIP Publishing.

Photo-detachment signal analysis to accurately determine electronegativity, electron temperature, and charged species density

Taccogna F;
2016

Abstract

Laser pulse induced photo-detachment combined with Langmuir probing has been introduced to diagnose plasma electronegativity. This technique uses a laser pulse to convert negative ions into electron-atom pairs and tracks the change of electron saturation current by a Langmuir probe. The existing model determines plasma electronegativity as the ratio of electron saturation current before and after detachment. However, this model depends on various assumptions and neglects the formation of a potential barrier between the laser channel and surrounding electronegative plasma. In this letter, we present a new analytical model to analyze photo-detachment signals in order to improve the accuracy of electronegativity measurements and extend this technique for measuring electron temperature and charged species density. This analytical model is supported by Particle-In-Cell simulation of electronegative plasma dynamics following laser photo-detachment. The analysis of the signal, detected on a simulated probe, shows that the present analytical model determines electronegativity, electron temperature, and plasma density with a relative error of similar to 20%, similar to 20%, and similar to 50%, respectively, whereas the electronegativity obtained from a previous model is underestimated by an order of magnitude. Published by AIP Publishing.
2016
Istituto di Nanotecnologia - NANOTEC
laser photodetachment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact