Optomechanical SiN nano-oscillators in high-finesse Fabry-Perot cavities can be used to investigate the interaction between mechanical and optical degree of freedom for ultra-sensitive metrology and fundamental quantum mechanical studies. In this paper, we present a nano-oscillator made of a high-stress round-shaped SiN membrane with an integrated on-chip 3-D acoustic shield properly designed to reduce mechanical losses. This oscillator works in the range of 200 kHz to 5 MHz and features a mechanical quality factor of Q similar or equal to 10(7) and a Q-frequency product in excess of 6.2 x 10(12) Hz at room temperature, fulfilling the minimum requirement for quantum ground-state cooling of the oscillator in an optomechanical cavity. The device is obtained by MEMS deep reactive-ion etching (DRIE) bulk micromachining with a two-side silicon processing on a silicon-on-insulator wafer. The microfabrication process is quite flexible such that additional layers could be deposited over the SiN membrane before the DRIE steps, if required for a sensing application. Therefore, such oscillator is a promising candidate for quantum sensing applications in the context of the emerging field of quantum technologies.

Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics

Serra Enrico;Borrielli Antonio;Marin Francesco;Pontin Antonio;Bonaldi Michele
2018

Abstract

Optomechanical SiN nano-oscillators in high-finesse Fabry-Perot cavities can be used to investigate the interaction between mechanical and optical degree of freedom for ultra-sensitive metrology and fundamental quantum mechanical studies. In this paper, we present a nano-oscillator made of a high-stress round-shaped SiN membrane with an integrated on-chip 3-D acoustic shield properly designed to reduce mechanical losses. This oscillator works in the range of 200 kHz to 5 MHz and features a mechanical quality factor of Q similar or equal to 10(7) and a Q-frequency product in excess of 6.2 x 10(12) Hz at room temperature, fulfilling the minimum requirement for quantum ground-state cooling of the oscillator in an optomechanical cavity. The device is obtained by MEMS deep reactive-ion etching (DRIE) bulk micromachining with a two-side silicon processing on a silicon-on-insulator wafer. The microfabrication process is quite flexible such that additional layers could be deposited over the SiN membrane before the DRIE steps, if required for a sensing application. Therefore, such oscillator is a promising candidate for quantum sensing applications in the context of the emerging field of quantum technologies.
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto Nazionale di Ottica - INO
MOMS oscillator
quantum optomechanics
SiN thin membrane
reactive ion etching
File in questo prodotto:
File Dimensione Formato  
prod_399558-doc_138769.pdf

solo utenti autorizzati

Descrizione: Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.15 MB
Formato Adobe PDF
4.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact