The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment.
A smart nanofibrous material for adsorbing and detecting elemental mercury in air
Antonella Macagnano;Emiliano Zampetti;Andrea Bearzotti;Fabrizio De Cesare;Francesca Sprovieri;Nicola Pirrone
2017
Abstract
The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM) traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb). Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure), requiring low power, low maintenance, and simple equipment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.