The turbulent Reynolds stresses in the upper layers of the ocean interact with the vertical shear of the Stokes drift velocity of the wave field to extract energy from the surface waves. The resulting rate of dissipation of wind waves in the global ocean is about 2.5 TW on the average but can reach values as high as 3.7 TW, making it as important as the dissipation of wave energy in the surf zones around the ocean margins. More importantly, the effect of Stokes dissipation is felt throughout the mixed layer. It also contributes to Langmuir circulations. Unfortunately, this wave dissipation mechanism has hitherto been largely ignored. In this note, we present a preliminary estimate of the Stokes dissipation rate in the global oceans based on the results of the WAVEWATCH III model for the year 2007 to point out its potential importance. Seasonal and regional variations are also described.

A preliminary estimate of the Stokes dissipation of wave energy in the global ocean.

Sclavo M;Carniel S
2009

Abstract

The turbulent Reynolds stresses in the upper layers of the ocean interact with the vertical shear of the Stokes drift velocity of the wave field to extract energy from the surface waves. The resulting rate of dissipation of wind waves in the global ocean is about 2.5 TW on the average but can reach values as high as 3.7 TW, making it as important as the dissipation of wave energy in the surf zones around the ocean margins. More importantly, the effect of Stokes dissipation is felt throughout the mixed layer. It also contributes to Langmuir circulations. Unfortunately, this wave dissipation mechanism has hitherto been largely ignored. In this note, we present a preliminary estimate of the Stokes dissipation rate in the global oceans based on the results of the WAVEWATCH III model for the year 2007 to point out its potential importance. Seasonal and regional variations are also described.
2009
Istituto di Scienze Marine - ISMAR
turbulent Reynolds stresses
Stokes dissipation rate
wind waves
global ocean
WAVEWATCH III model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/35274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact