We consider, as a simple model problem, the application of virtual element methods (VEMs) to the linear magnetostatic three-dimensional problem in the formulation of Kikuchi. In doing so, we also introduce new serendipity VEM spaces, where the serendipity reduction is made only on the faces of a general polyhedral decomposition (assuming that internal degrees of freedom could be more easily eliminated by static condensation). These new spaces are meant, more generally, for the combined approximation of H1-conforming (0-forms), H(curl)-conforming (1-forms), and H(div)-conforming (2-forms) functional spaces in three dimensions, and they could surely be useful for other problems and in more general contexts.
A family of three-dimensional virtual elements with applications to magnetostatics
L Beirao Da Veiga;F Brezzi;LD Marini;A Russo
2018
Abstract
We consider, as a simple model problem, the application of virtual element methods (VEMs) to the linear magnetostatic three-dimensional problem in the formulation of Kikuchi. In doing so, we also introduce new serendipity VEM spaces, where the serendipity reduction is made only on the faces of a general polyhedral decomposition (assuming that internal degrees of freedom could be more easily eliminated by static condensation). These new spaces are meant, more generally, for the combined approximation of H1-conforming (0-forms), H(curl)-conforming (1-forms), and H(div)-conforming (2-forms) functional spaces in three dimensions, and they could surely be useful for other problems and in more general contexts.File | Dimensione | Formato | |
---|---|---|---|
prod_393956-doc_136363.pdf
solo utenti autorizzati
Descrizione: A family of three-dimensional virtual elements with applications to magnetostatics
Tipologia:
Versione Editoriale (PDF)
Dimensione
684.13 kB
Formato
Adobe PDF
|
684.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.