Laser ablation in liquid (LAL) emerged as a versatile technique for the synthesis of nanoparticles with various structures and compositions, although the control over products remains challenging in most cases. For instance, it is still difficult to drive the size of metal oxide crystalline domains down to the level of few atom clusters with LAL. Here we demonstrate that laser ablation of a bulk iron target in aqueous solution of phosphonates gives phosphonate-grafted iron oxo-clusters polymerized into nanoaggregates with Fe: ligand ratio of 2:1, instead of the usual nanocrystalline iron oxides. We attribute this result to the strong ability of phosphonate groups to bind iron oxide clusters and prevent their further growth into crystalline iron oxide. These laser generated poly-oxo-clusters are biocompatible and trackable by magnetic resonance imaging, providing interesting features for use in biological environments, such as nano-vehicles for iron administration. Besides, this method is promising for the generation of atom-scale metal-oxide clusters, which are ubiquitary in chemistry and of interest in biochemistry, catalysis, molecular magnetism and materials science. (C) 2018 Elsevier Inc. All rights reserved.

Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates

Nodari L;
2018

Abstract

Laser ablation in liquid (LAL) emerged as a versatile technique for the synthesis of nanoparticles with various structures and compositions, although the control over products remains challenging in most cases. For instance, it is still difficult to drive the size of metal oxide crystalline domains down to the level of few atom clusters with LAL. Here we demonstrate that laser ablation of a bulk iron target in aqueous solution of phosphonates gives phosphonate-grafted iron oxo-clusters polymerized into nanoaggregates with Fe: ligand ratio of 2:1, instead of the usual nanocrystalline iron oxides. We attribute this result to the strong ability of phosphonate groups to bind iron oxide clusters and prevent their further growth into crystalline iron oxide. These laser generated poly-oxo-clusters are biocompatible and trackable by magnetic resonance imaging, providing interesting features for use in biological environments, such as nano-vehicles for iron administration. Besides, this method is promising for the generation of atom-scale metal-oxide clusters, which are ubiquitary in chemistry and of interest in biochemistry, catalysis, molecular magnetism and materials science. (C) 2018 Elsevier Inc. All rights reserved.
2018
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
DENSITY-FUNCTIONAL CALCULATIONS
OXIDE NANOPARTICLES
MAGNETIC NANOPARTICLES
BIOMEDICAL APPLICATIONS
File in questo prodotto:
File Dimensione Formato  
prod_393995-doc_136381.pdf

solo utenti autorizzati

Descrizione: Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates
Tipologia: Versione Editoriale (PDF)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/352848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact