The paper concerns the uniform polynomial approximation of a function f, continuous on the unit Euclidean sphere of $R^3$ and known only at a finite number of points that are somehow uniformly distributed on the sphere. First, we focus on least squares polynomial approximation and prove that the related Lebesgue constants w.r.t. the uniform norm grow at the optimal rate. Then, we consider delayed arithmetic means of least squares polynomials whose degrees vary from n - m up to n + m, being m = ?n for any fixed parameter 0 < ? < 1. As n tends to infinity, we prove that these polynomials uniformly converge to f at the near-best polynomial approximation rate. Moreover, for fixed n, by using the same data points, we can further improve the approximation by suitably modulating the action ray m determined by the parameter ?. Some numerical experiments are given to illustrate the theoretical results.

Uniform approximation on the sphere by least squares polynomials

Themistoclakis W;
2019

Abstract

The paper concerns the uniform polynomial approximation of a function f, continuous on the unit Euclidean sphere of $R^3$ and known only at a finite number of points that are somehow uniformly distributed on the sphere. First, we focus on least squares polynomial approximation and prove that the related Lebesgue constants w.r.t. the uniform norm grow at the optimal rate. Then, we consider delayed arithmetic means of least squares polynomials whose degrees vary from n - m up to n + m, being m = ?n for any fixed parameter 0 < ? < 1. As n tends to infinity, we prove that these polynomials uniformly converge to f at the near-best polynomial approximation rate. Moreover, for fixed n, by using the same data points, we can further improve the approximation by suitably modulating the action ray m determined by the parameter ?. Some numerical experiments are given to illustrate the theoretical results.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
De la Vallée Poussin type mean
Least squares approximation
Lebesgue constant
Polynomial approximation on the sphere
Uniform approximation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact