In this paper, we investigate the effect of the stacking sequence in MoS2 multilayer systems on their electron transport properties, through first-principles simulations of structural and electron transport properties. We show that interlayer electron transport is highly sensitive to the stacking sequence of the multilayers, with specific sequences producing a much higher electron transmission due to larger orbital interactions and band-structure effects. These results explain contrasting experimental evidence on interlayer transport measurements as due to imperfect structural control, provide insight on modeling, and suggest ways to improve the performance of electron devices based on MoS2 multilayer systems via multilayer structure engineering.

Stacking and interlayer electron transport in MoS2

Fortunelli Alessandro;
2018

Abstract

In this paper, we investigate the effect of the stacking sequence in MoS2 multilayer systems on their electron transport properties, through first-principles simulations of structural and electron transport properties. We show that interlayer electron transport is highly sensitive to the stacking sequence of the multilayers, with specific sequences producing a much higher electron transmission due to larger orbital interactions and band-structure effects. These results explain contrasting experimental evidence on interlayer transport measurements as due to imperfect structural control, provide insight on modeling, and suggest ways to improve the performance of electron devices based on MoS2 multilayer systems via multilayer structure engineering.
2018
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
modeling; electron transport properties
first-principles simulations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact