The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For bio-logical evaluation, H9c2 cell line was cultured for 10 days.Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1%) and stimulation with 50 nM all trans-retinoic acid (CRA), respectively. Immunohistochemistry showed elongated myotubes inC1%while round and multi-nucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9%; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds.
Cardiac tissue regeneration: A preliminary study on carbon-based nanotubes gelatin scaffold
Cabiati Manuela;Vozzi Federico;Domenici Claudio;Del Ry Silvia
2018
Abstract
The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For bio-logical evaluation, H9c2 cell line was cultured for 10 days.Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1%) and stimulation with 50 nM all trans-retinoic acid (CRA), respectively. Immunohistochemistry showed elongated myotubes inC1%while round and multi-nucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9%; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds.File | Dimensione | Formato | |
---|---|---|---|
prod_396243-doc_137191.pdf
solo utenti autorizzati
Descrizione: Cardiac tissue regeneration: A preliminary study on carbon-based nanotubes gelatin scaffold
Tipologia:
Versione Editoriale (PDF)
Dimensione
678.79 kB
Formato
Adobe PDF
|
678.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.