Seven types of atmospheric dusts (road dust, soil dust, brake dust, desert dust, pellet ash and coke and certified material NIST1648a urban dust) have been tested for their genotoxicity on specimens of Echinogammarus veneris, a small aquatic amphipod. Experiments were carried out in vivo, by exposing the animals for 24 h to water containing 25 mg/L of dust. Each dust has been chemically analyzed for ions, elemental carbon, organic carbon and for the soluble and insoluble fractions of elements. Nonspecific damages to DNA have been evaluated by the comet test, while oxidative damages have been estimated by coupling the comet test with formamido pyrimidine DNA glycosylase reaction. The animal tissues have been acid digested and analyzed for their elemental content to evaluate the bio-accumulation. All the considered dusts have caused a significant non-specific DNA damage, while the oxidative stress was shown only by dust types containing high concentration of elements. Furthermore, the oxidative damage has shown a positive correlation with the total bio-accumulated elemental concentration. For all the dust samples, the correlation with bio-accumulation in the tissues was more satisfactory for the insoluble fraction than for the soluble fraction of elements. Elements contained in solid particles seem then to be the main responsible bioaccumulation and for the oxidative stress. (C) 2017 Elsevier Ltd. All rights reserved.

In-vivo assesment of the genotoxic and oxidative stress effects of particulate matter on Echinogammarus veneris

Perrino Cinzia;
2017

Abstract

Seven types of atmospheric dusts (road dust, soil dust, brake dust, desert dust, pellet ash and coke and certified material NIST1648a urban dust) have been tested for their genotoxicity on specimens of Echinogammarus veneris, a small aquatic amphipod. Experiments were carried out in vivo, by exposing the animals for 24 h to water containing 25 mg/L of dust. Each dust has been chemically analyzed for ions, elemental carbon, organic carbon and for the soluble and insoluble fractions of elements. Nonspecific damages to DNA have been evaluated by the comet test, while oxidative damages have been estimated by coupling the comet test with formamido pyrimidine DNA glycosylase reaction. The animal tissues have been acid digested and analyzed for their elemental content to evaluate the bio-accumulation. All the considered dusts have caused a significant non-specific DNA damage, while the oxidative stress was shown only by dust types containing high concentration of elements. Furthermore, the oxidative damage has shown a positive correlation with the total bio-accumulated elemental concentration. For all the dust samples, the correlation with bio-accumulation in the tissues was more satisfactory for the insoluble fraction than for the soluble fraction of elements. Elements contained in solid particles seem then to be the main responsible bioaccumulation and for the oxidative stress. (C) 2017 Elsevier Ltd. All rights reserved.
2017
Bio-accumulation
Elemental solubility
Comet test
Formamido pyrimidine DNA glycosylase
PM chemical composition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact