In this paper we propose a probabilistic approach for the automatic organization of pictures in personal photo album. Images are analyzed in term of faces and low-level visual features of the background. The description of the background is based on RGB color histogram and on Gabor filter energy accounting for texture information. The face descriptor is obtained by projection of detected and rectified faces on a common low dimensional eigenspace. Vectors representing faces and background are clustered in an unsupervised fashion exploiting a mean shift clustering technique. We observed that, given the peculiarity of the domain of personal photo libraries where most of the pictures contain faces of a relatively small number of different individuals, clusters tend to be not only visually but also semantically significant. Experimental results are reported
MEAN SHIFT CLUSTERING FOR PERSONAL PHOTO ALBUM ORGANIZATION
2008
Abstract
In this paper we propose a probabilistic approach for the automatic organization of pictures in personal photo album. Images are analyzed in term of faces and low-level visual features of the background. The description of the background is based on RGB color histogram and on Gabor filter energy accounting for texture information. The face descriptor is obtained by projection of detected and rectified faces on a common low dimensional eigenspace. Vectors representing faces and background are clustered in an unsupervised fashion exploiting a mean shift clustering technique. We observed that, given the peculiarity of the domain of personal photo libraries where most of the pictures contain faces of a relatively small number of different individuals, clusters tend to be not only visually but also semantically significant. Experimental results are reportedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.