Single-qubit thermometry presents the simplest tool to measure the temperature of thermal baths with reduced invasivity. At thermal equilibrium, the temperature uncertainty is linked to the heat capacity of the qubit, however, the best precision is achieved outside the equilibrium condition. Here, we discuss a way to generalize this relation in a nonequilibrium regime, taking into account purely quantum effects such as coherence. We support our findings with an experimental photonic simulation.

Bridging thermodynamics and metrology in nonequilibrium quantum thermometry

De Pasquale A;Giovannetti V;
2018

Abstract

Single-qubit thermometry presents the simplest tool to measure the temperature of thermal baths with reduced invasivity. At thermal equilibrium, the temperature uncertainty is linked to the heat capacity of the qubit, however, the best precision is achieved outside the equilibrium condition. Here, we discuss a way to generalize this relation in a nonequilibrium regime, taking into account purely quantum effects such as coherence. We support our findings with an experimental photonic simulation.
2018
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/353877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact