Generating given 3-D field intensity distributions in a non-homogeneous scenario is a canonical problem which is of interest in many applications. On the other side, due to its very challenging nature, very few methods have been proposed up to now in the literature. In this communication, starting from the well-known time reversal (TR) technique, a simple innovative approach, the so-called optimized multi-target TR (O-mt-TR), is presented. The strategy is based on the optimization of the phase shifts between the time-reversed fields in a number of control points within the target region. In doing so, the proposed method outperforms the simple juxtaposition of time-reversed fields pursued by the so-called mt-TR, or even succeed in cases in which the latter fails completely. This capability of the proposed method is assessed through a numerical analysis concerned with a 3-D inhomogeneous scenario, in which the results are quantitatively appraised in terms of coverage of the target areas.
3-D field intensity shaping via optimized multi-target time reversal
Crocco Lorenzo;
2018
Abstract
Generating given 3-D field intensity distributions in a non-homogeneous scenario is a canonical problem which is of interest in many applications. On the other side, due to its very challenging nature, very few methods have been proposed up to now in the literature. In this communication, starting from the well-known time reversal (TR) technique, a simple innovative approach, the so-called optimized multi-target TR (O-mt-TR), is presented. The strategy is based on the optimization of the phase shifts between the time-reversed fields in a number of control points within the target region. In doing so, the proposed method outperforms the simple juxtaposition of time-reversed fields pursued by the so-called mt-TR, or even succeed in cases in which the latter fails completely. This capability of the proposed method is assessed through a numerical analysis concerned with a 3-D inhomogeneous scenario, in which the results are quantitatively appraised in terms of coverage of the target areas.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.