Microwave imaging can effectively image the evolution of a hemorrhagic stroke thanks to the dielectric contrast between the blood and the surrounding brain tissues. To keep low both the form factor and the power consumption in a bedside device, we propose implementing a microwave imaging algorithm for stroke monitoring in a programmable system-on-chip, in which a simple ARM-based CPU offloads to an FPGA the heavy part of the computation. Compared to a full-software implementation in the ARM CPU, we obtain a 5× speed increase with hardware acceleration without loss in accuracy and precision.

Low-cost low-power acceleration of a microwave imaging algorithm for brain stroke monitoring

Scapaticci Rosa;Crocco Lorenzo
2018

Abstract

Microwave imaging can effectively image the evolution of a hemorrhagic stroke thanks to the dielectric contrast between the blood and the surrounding brain tissues. To keep low both the form factor and the power consumption in a bedside device, we propose implementing a microwave imaging algorithm for stroke monitoring in a programmable system-on-chip, in which a simple ARM-based CPU offloads to an FPGA the heavy part of the computation. Compared to a full-software implementation in the ARM CPU, we obtain a 5× speed increase with hardware acceleration without loss in accuracy and precision.
2018
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Biomedical imaging
Embedded systems
Field-programmable gate array
Hardware accelerator
System-on-chip
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact