Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21x performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids. (C) 2016 Elsevier B.V. All rights reserved.

Enhanced computational performance of the lattice Boltzmann model for simulating micron- and submicron-size particle flows and non-Newtonian fluid flows

Succi Sauro
2017

Abstract

Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21x performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids. (C) 2016 Elsevier B.V. All rights reserved.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Computational methods in fluid dynamics
Hydrodynamics
Lattice-Boltzmann
FORTRAN
Optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/354178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 10
social impact